Hola En este espacio encontrarás información adicional que enriquecerá los conocimientos adquiridos en el curso de Física II, tales como videos demostrativos, lecturas, notas e imágenes interesantes, ligas a lugares de interés y a prácticas virtuales, todo esto relacionado con el increíble mundo de la Física y enfocado principalmente a los temas correspondientes al curso, que son: -Dinámica de fluidos -Ondas y sonido -Termodinámica El blog lo construiremos entre todos (grupos 1 y 2), por turno un equipo subira información y dentro de tu calificación se contará tanto la información que tu equipo suba como los comentarios que hagas sobre lo que se va añadiendo.
El viento que provocó la caída del puente se movía a una velocidad de 61 kilómetros por hora y tenía 5 segundos de frecuencia, que resultó ser muy similar a la frecuencia natural del puente “con lo cual la energía transferida al sistema era máxima y las ondas estacionarias producidas en el puente empezaron a balancearlo y acabaron colapsándolo.” Pero también el método de construcción empleado en el puente de Tacoma influyó en el incidente. La utilización de vigas de acero formando una estructura de sustentación horizontal cerrada y maciza oponía resistencia al viento, creando corrientes y turbulencias de aire por encima y por debajo de la estructura. El caso del puente de Tacoma es un clásico ejemplo de errores de ingeniería y de la importancia que tienen tanto la aerodinámica como los efectos producidos por la resonancia en las estructuras y construcciones. En el nuevo puente que sustituyó al autodestruído en 1950, así como en los puentes construidos con métodos modernos de sustentación, los elementos de soporte disponen de aberturas y deflectores diseñados para permitir y dirigir el paso de viento a través de éstos. En grandes estructuras modernas además se llegan a hacer pruebas en túneles de viento, tanto del elemento en sí como del elemento una vez ubicado en su entorno (en forma de maqueta a escala) teniendo en cuenta tanto accidentes geográficos como otras construcciones cercanas que puedan producir turbulencias y efectos aerodinámicos.
¿Porqué vuelan los aviones? En 1903 los hermanos Wilbur y Orville Wright fueron los primeros en volar con un biplano propulsado a motor. Aquella hazaña marcó el inicio de la historia de la aviación. Desde entonces, alrededor de la ciencia aeroespacial se han producido todo tipo de desarrollos tecnológicos, pero ninguno hubiera servido de nada si no se hubiese logrado antes lo que el hombre buscaba desde hacía siglos: ganar la batalla a la ley de la gravitación universal, pronunciada por Newton, con otra ley física conocida como el Teorema de Bernoulli, en el que se basó el principio de la sustentación de los aviones. Contra lo que se pudiera pensar, ambas demostraciones son casi contemporáneas, con lo que la teoría estaba enunciada desde el siglo XVIII y sólo hacía falta saber llevarla a la práctica. Se trataba de conseguir anular la fuerza calculada por Newton sobre un objeto, el avión, aplicando lo que aseguraba Bernoulli: cuando aumenta la velocidad del aire, su presión disminuye. A partir de ahí, aunque son muchas más las variantes que condicionan el vuelo, la explicación más sencilla para poder entender las razones por las que vuelan los aviones se centra en la forma de sus alas. Su diseño permite que el aire circule más rápido por la parte superior del ala y más lento por su parte inferior. Esto hace que la presión bajo el ala sea mayor que encima de ella y, por lo tanto, el avión recibe un empujón hacia arriba. Así, queda suspendido entre dos fuerzas. Cuando el avión se mueve debido a la fuerza del motor, el aire circula por sus alas produciendo el empuje que lo hace volar. Introducción Definición Esta rama de la mecánica de fluidos se ocupa de las leyes de los fluidos en movimiento; estas leyes son enormemente complejas, y aunque la hidrodinámica tiene una importancia práctica mayor que la hidrostática,sólo podemos tratar aquí algunos conceptos básicos. Euler fue el primero en reconocer que las leyes dinámicas para los fluidos sólo pueden expresarse de forma relativamente sencilla si se supone que el fluido es incompresible e ideal, es decir, si se pueden despreciar los efectos del rozamiento y la viscosidad. Sin embargo, como esto nunca es así en el caso de los fluidos reales en movimiento, los resultados de dicho análisis sólo pueden servir como estimación para flujos en los que los efectos de la viscosidad son pequeños. Tipos de Fluidos a) Fluidos incomprensibles y sin rozamiento Estos flujos cumplen el llamado teorema de Bernoulli, que afirma que la energía mecánica total de un flujo incompresible y no viscoso (sin rozamiento) es constante a lo largo de una línea de corriente. Las líneas de corriente son líneas de flujo imaginarias que siempre son paralelas a la dirección del flujo en cada punto, y en el caso de flujo uniforme coinciden con la trayectoria de las partículas individuales de fluido. El teorema de Bernoulli implica una relación entre los efectos de la presión, la velocidad y la gravedad, e indica que la velocidad aumenta cuando la presión disminuye. Este principio es importante para predecir la fuerza de sustentación de un ala en vuelo. Ecuación de Continuidad: Determina que en un mismo volumen dentro de un tubo, se puede determinar la velocidad de entrada y salida de fluidos mediante la siguiente ecuación que relaciona áreas y velocidades. A1.v1 = A2.v2 = constante. Ecuación de Bernoulli: (principio de conservación de la energía) para flujo ideal (sin fricción). p1 + δ.v1 ²/2 + δ.g.h1 = p2 + δ.v2 ²/2 + δ.g.h2 = constante
g.h = energía potencial por unidad de masa. v ²/2 = energía cinética por unidad de masa.
Ecuación de Bernoulli para flujo en reposo: v1 = v2 = 0 p1 + δ.g.h1 = p2 + δ.g.h2
Chequen estos Links!! http://www.youtube.com/watch?v=5YHqCkCJbWQ http://www.youtube.com/watch?v=kXBXtaf2TTg
Érase una vez un Rey que sospechaba de su joyero. Pensaba que cuando le entregaba oro para hacer una corona maciza, éste le cambiaba parte del oro por otro metal y en la misma cantidad (mismo peso). De esta forma cuando se comparaba la masa de la corona y la del oro entregado coincidían. Pero el Rey sospechaba . Llamó al consejero científico para ver cómo podían "pescarle". Después de un tiempo, el científico, dio con la solución. Si cambiaba 50 g de oro por 50 g de cobre (por ejemplo), ambos pesan lo mismo pero no tienen el mismo volumen (imagínese, como caso extremo, cambiar 1 kg de oro por 1 kg de paja). Era fácil detectar el fraude. Se comprobaría, no sólo el peso del oro entregado, sino también su volumen. Al recoger la corona se repetiría la operación con ésta. El peso sería el mismo pero el volumen no. Para medir el volumen de un cuerpo irregular (macizo) basta con introducirlo en un recipiente lleno de agua y ver la cantidad de éstaque desaloja. ¡Eureka!
¿Es verdad que soportamos una presión de diez mil kilos por metro cuadrado?
Parece mentira pero es verdad. Si pintáramos en el suelo un cuadrado de un metro de lado y pesáramos todo el aire que está encima de él resultaría ser el mismo que si pusiéramos diez metro de agua de altura. Es decir, todo el aire contenido en un metro de base pesa lo mismo que la contenida de agua con diez metro de altura (diez metros cúbicos). Como cada metro cúbico de agua pesa 1000 kg (1 T), resulta que la presión ejercida (peso en un metro cuadrado) es de 10 000 kg (kp). Esta es la presión que soportamos por estar inmerso en el fondo de un mar de aire. El traje que los astronautas llevan a la Luna no es, como mucha gente piensa, para poder respirar, para ello bastaría una bombona de las que utiliza los submarinistas, este traje tiene que llevar la presión atmosférica de la Tierra dentro de él. Debe soportar, por lo tanto, una fuerza hacia fuera de igual valor que la expuesta. Nosotros mismo tenemos interiormente esa misma presión, sino sucumbiríamos al peso de nuestro aire.
¿Es verdad que los océanos Atlántico y Pacífico tienen distinto nivel?
Mucha gente cree que el Canal de Panamá se construyó con exclusas que habían de llenarse para ir subiendo a los barcos. Éstas se necesitaban porque se quería aprovechar un gran lago que hay en el centro del istmo, y cuya altura está por encima del nivel del mar. Luego hay que utilizar las exclusas para bajar los barcos, en el otro lado del canal. Esto no quiere decir que todos los océanos tengan el mismo nivel, pues respecto a qué medimos las alturas de las aguas. Respecto del fondo marino es evidente que no todos tienen la misma profundidad. Respecto al centro de la Tierra, tampoco, porque la Tierra está achatada por los polos y, además, está el tema de las mareas (influencia de la Luna sobre la masa de agua terrestre).